Skip to main content
Version: v1.3_alpha

Pairing

A library implementing the alt_bn128 elliptic curve operations.

PRIME_Q

uint256 PRIME_Q

G1Point

struct G1Point {
uint256 x;
uint256 y;
}

G2Point

struct G2Point {
uint256[2] x;
uint256[2] y;
}

PairingAddFailed

error PairingAddFailed()

custom errors

PairingMulFailed

error PairingMulFailed()

PairingOpcodeFailed

error PairingOpcodeFailed()

negate

function negate(struct Pairing.G1Point p) internal pure returns (struct Pairing.G1Point)

The negation of p, i.e. p.plus(p.negate()) should be zero.

plus

function plus(struct Pairing.G1Point p1, struct Pairing.G1Point p2) internal view returns (struct Pairing.G1Point r)

r Returns the sum of two points of G1.

scalarMul

function scalarMul(struct Pairing.G1Point p, uint256 s) internal view returns (struct Pairing.G1Point r)

r Return the product of a point on G1 and a scalar, i.e. p == p.scalarMul(1) and p.plus(p) == p.scalarMul(2) for all points p.

pairing

function pairing(struct Pairing.G1Point a1, struct Pairing.G2Point a2, struct Pairing.G1Point b1, struct Pairing.G2Point b2, struct Pairing.G1Point c1, struct Pairing.G2Point c2, struct Pairing.G1Point d1, struct Pairing.G2Point d2) internal view returns (bool isValid)

Return Values

NameTypeDescription
isValidboolThe result of computing the pairing check e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1 For example, pairing([P1(), P1().negate()], [P2(), P2()]) should return true.